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Abstract
The two-particle Schrödinger eigenvalue equation in a spherical potential is
considered. For an arbitrary total angular momentum L, its projection M and
the parity π , the Hamiltonian and its eigenvalue problem is expressed in terms
of r1, r2 and r12 only. The dependence on the remaining angles as well as on
the angular momentum is reflected by the finite multi-dimensional structure of
the eigenvalue equations.

PACS numbers: 31.15.−p, 03.65.Ge, 02.30.Jr

1. Introduction

The reduction of the helium eigenvalue problem for 1Se and 3Se to an equation which depends
on the three triangle variables r1, r2 and r12 only, was given by Hylleraas nearly 80 years ago
[1]. A year later, in 1930, Breit [2] extended this approach to P o and P e states1. Since then
the equations of Hylleraas and Breit became a starting point for many approaches aimed at
deriving very precise approximations to the wavefunctions describing the pertinent states of
the helium atom [3–6]. Next, every 30 years consecutive generalizations to arbitrary values
of L appeared: Bhatia and Temkin [7] in 1964 and Kalotas [8] in 1965 followed by Bottcher
et al [9] in 1994. In the first two approaches the problem has been solved on the basis of
Wigner DL

M,K functions, while the third one utilizes the bipolar basis. In all these papers, the
Schrödinger equation for a helium-like atom has been reduced to a finite system of equations
depending on the triangle variables only for an arbitrary angular momentum L and parity
π . Both Wigner and bipolar bases were recently applied by Korobov et al to a study on
antiprotonic helium atom [10, 11] and on H+

2, HD+ molecular ions [12]. Similar ideas were

1 In fact, Breit used r1, r2 and ϑ12, but the relation cos ϑ12 = (r2
1 + r2

2 − r2
12)/(2r1r2) determines the mutual

correspondence between Breit’s coordinates and those of Hylleraas. In further discussions the specific choice of r1, r2
and r12 is not significant. In general, they can be replaced by any three equivalent variables.
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also used by Jeziorski et al [13] in studies concerned with the completeness of the functional
bases used in molecular structure calculations.

The reduction of the Schrödinger equation presented in this paper is performed in the
bipolar basis. This basis was introduced, analyzed and applied by Schwartz [14] in 1961.
Later, in 1967, King [15] gave its extensive analysis. In the present work the earlier results
are generalized for the case of two, not necessarily identical, interacting particles confined in
an external spherical potential. In this way the results are applicable to all kinds of exotic
systems, such as, for example, to muonic, positronic or antiprotonic atoms [11, 16]. The
bipolar expansion proved to be particularly useful to the description of antiprotonic atoms
[11]. Besides, the resulting equations are simpler (the coupling terms are simpler than in
[7, 8] and contain no complicated sums, in contrast to [9]). The reduction to the finite system
of equations is based on the construction of a space which is invariant under the action of
operators forming the Schrödinger Hamiltonian.

2. General considerations

Let us take a product of a radial function f (r1, r2, r12) depending on the triangle variables
and the angular function �l1,l2(r̂1, r̂2) which is an eigenfunction of the angular momenta l1
and l2 of each particle. The way the angular variables r̂1 and r̂2 are defined is irrelevant for
this discussion. In order to avoid any misunderstanding curly brackets are used to denote the
range of actions of an operator. For example, {X̂f }g means that X̂ acts on f only, where
X̂ is an operator and f , g functions belonging to its domain. For simplicity, throughout this
work, i = 1, 2 refers to a specific particle. A complementary index î = 1 + (i mod 2) has also
been introduced.

As one can see,

�i f (r1, r2, r12)�l1,l2(r̂1, r̂2) = {�if (r1, r2, r12)}�l1,l2(r̂1, r̂2)

− f (r1, r2, r12)
l̂2
i

r2
i

�l1,l2(r̂1, r̂2)

+

{
(−2)

rî

rir12

∂f (r1, r2, r12)

∂r12

}
{�i�l1,l2(r̂1, r̂2)}, (1)

where �i is the Laplace operator of the ith particle and

{�if (r1, r2, r12)}

≡
(

∂2

∂r2
i

+
2

ri

∂

∂ri

+
∂2

∂r2
12

+
2

r12

∂

∂r12
+

r2
i − r2

î
+ r2

12

rir12

∂2

∂ri∂r12

)
f (r1, r2, r12). (2)

The angular operators �i read

�i ≡ ri

rî

∑
a∈{x,y,z}

aî

∂

∂ai

= 1

cos �i

√
2π

3

[(
Y 1

−1(r̂î )l̂
+
i + Y 1

+1(r̂î )l̂
−
i

) −cos ϑ12
(
Y 1

+1(r̂i )l̂
−
i + Y 1

−1(r̂i )l̂
+
i

)]
, (3)

where l̂+
i , l̂−i are the ladder operators for both particles, Y l

m are spherical harmonics,
cos ϑ12 = (

r2
1 + r2

2 − r2
12

)/
(2r1r2) and �i are the polar angles of the particles [6]. Let

us note that equation (1) is equivalent to equation (11.30) of reference [6].
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Let O be the space spanned by eigenfunctions �l1,l2(r̂1, r̂2) with l1, l2 = 0, 1, 2, . . . and
OL,M,π its subspace spanned by

�
L,M
l1,l2

(r̂1, r̂2) = (−1)l1+l2+M
√

2L + 1
∑

m1,m2

(
l1 l2 L

m1 m2 −M

)
Y l1

m1
(r̂1)Y

l2
m2

(r̂2), (4)

corresponding to a specific pair L,M and parity π = (−1)l1+l2 . By the construction, the
closure O of O is complete on the spheres defined by r̂1, r̂2 while OL,M,π is its complete
L,M,π adapted subspace. As demonstrated by King [15], every element of OL,M,π can be
expanded in terms of

Q
L,M
l,l1,l2

≡ Pl(cos ϑ12)�
L,M
l1,l2

(r̂1, r̂2), (5)

where the values l1, l2 are restricted by the condition l1 + l2 = L for the natural parity
π = (−1)L and by l1 + l2 = L+1 for the unnatural parity π = (−1)L+1, and Pl, l = 0, 1, 2, . . .

are the Legendre polynomials. In equation (5) d = L+1 functions �
L,M
l1,L−l1

, l1 = 0, 1, . . . , L in

the case of the natural parity π = (−1)L and d = L functions �
L,M
l1,L−l1+1, l1 = 1, . . . , L in the

case of the unnatural parity π = (−1)L+1 are referred to as the generator functions.
The one-particle Laplace operators commute with L̂2 and L̂z. Therefore the operators

�1,�2 also commute with L̂2 and L̂z. Consequently, the completeness of OL,M,π implies
that the rhs of equation (1) can be expressed as

�i f (r1, r2, r12)�
L,M
l1,l2

(r̂1, r̂2) =
L∑

l̃1=d0

{
X̂

l̃i li

i f (r1, r2, r12)
}
�

L,M

l̃1,l̃2
(r̂1, r̂2), (6)

where the operators X̂
l̃1,l1

1 , X̂
l̃2,l2

2 depend on the triangle variables only and act on the radial
function f and

d0 = L + 1 − d =
{

0, if d = L + 1,

1, if d = L.

The first particle angular momentum quantum number l̃1 is chosen as the summation index in
expansion (6) for both values of i but, for the convenience, quantum numbers l̃2 = d − l̃1 and

l2 = d − l1 have been used as labels in the operator X̂
l̃2,l2

2 . One can also see that

X̂
l̃ ,l

2 (r1, r2, r12) = X̂
l̃ ,l

1 (r2, r1, r12), (7)

where d0 � l, l̃ � L.
On the other hand, any eigenfunction of a two-particle Schrödinger Hamiltonian can be

expanded in the same manner

�(r1, r2) =
L∑

l1=d0

�l1(r1, r2, r12)�
L,M
l1,l2

(r̂1, r̂2). (8)

If expansion (8) is inserted into the Schrödinger equation[
1

2m1
p̂2

1 +
1

2m2
p̂2

2 + V − E

]
� = 0, (9)

where V ≡ V (r1, r2, r12) depends on the triangle variables only, then the application of
equation (6) to the operators p̂2

1 = −�1 and p̂2
1 = −�2 implies

L∑
l̃1=d0

{
L∑

l1=d0

Â
l̃1,l1

1 �l1

}
�

L,M

l̃1,l̃2
= 0, (10)
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where

Â
l̃1,l1 = (−1)

2m1
X̂

l̃1,l1

1 +
(−1)

2m2
X̂

l̃2,l2

2 + δl̃1,l1
(V − E). (11)

As demonstrated by King [15], the set of generator functions �
L,M

l̃1,l̃2
(r̂1, r̂2) in equation (10)

uniquely corresponds to the set of Wigner’s functions DL
M,K which depend on the three Euler

angles only. Then, the generator functions �
L,M

l̃1,l̃2
form a set of linearly independent functions

of the angular variables. A two-particle function can be expressed as a linear combination of
the generator functions with coefficients dependent on the triangle variables r1, r2, r12 only.
Consequently, the curly brackets in expansion (10) are equal to zero. Thus, we have obtained
a system of d = L + 1 or d = L coupled equations in the triangle variables

L∑
l1=d0

(
(−1)

2m1
X̂

l̃1,l1

1 +
(−1)

2m2
X̂

l̃2,l2

2

)
�l1 + (V − E)�l̃1

= 0. (12)

Each of these equations, indexed by l̃1 and depending only on the triangle variables, is the
expansion coefficient of initial Schrödinger equation (9), associated with the angular generator
function �

L,M

l̃1,l̃2
(r̂1, r̂2).

Schrödinger equation (9), reduced to the system of coupled equations (12), can be written
as a homogeneous multicomponent matrix-operator equation[

(−1)

2m1
D̂1 +

(−1)

2m2
D̂2 + (V − E)Id

]
�L = 0d , (13)

where

D̂1 ≡ [
X̂

l̃1,l1

1

]
d0�l̃1,l1�L

,

D̂2 ≡ [
X̂

l̃2=d−l̃1,l2=d−l1

2

]
d0�l̃1,l1�L

are matrix operators representing the Laplace operators of both particles, Id is the identity
matrix of dimension d,

�L ≡ [�d0 ,�d0+1, . . . , �L]T

is a d-component column, representative of the wavefunction, and 0d is the column of zeros.

In the following two sections the exact expressions for �1,�2, X̂
l̃1,l1

1 , X̂
l̃2,l2

2 and, thus,
Schrödinger equation (12) in the triangle variables for any state of given L,M and π are
derived.

3. The case of a state of given L, M and π = (−1)L

For a state corresponding to given L,M and π = (−1)L the set of generator functions (4) is
determined by the values of l1 = 0, 1, 2, . . . , L and l2 = L − l1. When we act on a chosen
generator �

L,M
l1,l2

with the angular operators �1 and �2 (3) then for both particles, after arduous
calculations, we get

�1�
L,M
l1,l2

=
√

(L − l2)(2l1 + 1)(L − l1 + 1)

(2l2 + 3)
�

L,M
l1−1,l2+1 − l1 cos ϑ12�

L,M
l1,l2

, (14)

�2�
L,M
l1,l2

=
√

(L − l1)(2l2 + 1)(L − l2 + 1)

(2l1 + 3)
�

L,M
l1+1,l2−1 − l2 cos ϑ12�

L,M
l1,l2

, (15)

4
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and

�1f (r1, r2, r12)�
L,M
l1,l2

= {
X̂

l1,l1

1 f (r1, r2, r12)
}
�

L,M
l1l2

+
{
X̂

l1−1,l1

1 f (r1, r2, r12)
}
�

L,M
l1−1,l2+1, (16)

�2f (r1, r2, r12)�
L,M
l1,l2

= {
X̂

l2,l2

2 f (r1, r2, r12)
}
�

L,M
l1l2

+
{
X̂

l2−1,l2

2 f (r1, r2, r12)
}
�

L,M
l1+1,l2−1. (17)

As we can see, in this case expansion (6) contains only two non-zero operators. The first
corresponds to 0 � li � L:

X̂
li ,li

i = ∂2

∂r2
i

+
2

ri

∂

∂ri

+
∂2

∂r2
12

+
(2 + li)r

2
i + li

(
r2
î

− r2
12

)
r2
i r12

∂

∂r12

+
r2
i − r2

î
+ r2

12

rir12

∂2

∂ri∂r12
− li(li + 1)

r2
i

, (18)

and the second one to 1 � li � L:

X̂
li−1,li

i = −2rî

rir12

√
(L − lî )(2li + 1)(L − li + 1)

(2lî + 3)

∂

∂r12
. (19)

The operators �1,�2, X̂
l1−1,l1

1 and X̂
l2−1,l2

2 depend on l1, l2 indices only. However, for the
sake of further generalizations, it is convenient to insert an auxiliary index L, which in this
case is equal to l1 + l2. Let us note that for a given value of the total angular momentum L
and the parity π the coefficients in expansions (14), (15) and, in consequence, the operators

X̂
l̃1,l1

1 , X̂
l̃2,l2

2 and equation (12) are independent of M.
In this case Schrödinger equation (9) with the wavefunction of form (8) reduces to a

system of (L + 1) coupled equations

(−1)

2m1

(
X̂

0,0
1 �0 + X̂

0,1
1 �1

)
+

(−1)

2m2

(
X̂

L,L

2 �0
) = (E − V )�0,

(−1)

2m1

(
X̂

l1,l1

1 �l1 + X̂
l1,l1+1
1 �l1+1

)
+

(−1)

2m2

(
X̂

l2,l2

2 �l1 + X̂
l2,l2+1
2 �l1−1

) = (E − V )�l1 , (20)

(−1)

2m1

(
X̂

L,L

1 �L

)
+

(−1)

2m2

(
X̂

0,0
2 �L + X̂

0,1
2 �L−1

) = (E − V )�L,

where l1 = 1, 2, . . . , L − 1. In order to construct the energy functional necessary for an
application of the variational method, the equations should be multiplied, respectively, by
the generator functions �

L,M
0,L ,�

L,M
l1,l2

,�
L,M
L,0 , summed together and integrated over the angular

variables with trial function (8).
It can be easily seen that the above system of equations corresponds to a very simple

tridiagonal d × d matrix operator (d = L + 1) of the multi-component Schrödinger

equation (13). The operator D̂1 consists of the diagonal elements X̂
l1,l1

1 and of the upper

diagonal elements X̂
l1,l1+1
1 . Similarly the operator D̂2 consists of the diagonal elements

X̂
d−l1,d−l1

2 and of the lower diagonal elements X̂
d−l1,d−(l1−1)

2 placed in the operator matrix at
the positions (l1, l1 − 1).

4. The case of a state of given L, M and π = (−1)L+1

This is the complementary case to the previous one—it has the unnatural parity, π = (−1)L+1.
Now the set of generator functions (4) is determined by the values of l1 = 1, 2, . . . , L and

5
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l2 = L + 1 − l1. The results of the action of the angular operators �1,�2 (3) on the generator
functions �

L,M
l1,l2

are given by the same formulae as before (14), (15), but now with L = l1+l2−1.
Similarly, the action of the Laplace operators �1,�2 can be expressed by the same expansions

(16), (17) with the same expansion operators X̂
l1,l1

1 , X̂
l2,l2

2 (18), where 1 � l1, l2 � L; and the

same operators X̂
l1−1,l1

1 , X̂
l2−1,l2

2 (19), where 2 � l1, l2 � L.
Schrödinger equation (9) transforms to the following system of L equations:

(−1)

2m1

(
X̂

1,1
1 �1 + X̂

1,2
1 �2

)
+

(−1)

2m2

(
X̂

L,L

2 �1
) = (E − V )�1,

(−1)

2m1

(
X̂

l1,l1

1 �l1 + X̂
l1,l1+1
1 �l1+1

)
+

(−1)

2m2

(
X̂

l2,l2

2 �l1 + X̂
l2,l2+1
2 �l1−1

) = (E − V )�l1 , (21)

(−1)

2m1

(
X̂

L,L

1 �L

)
+

(−1)

2m2

(
X̂

1,1
2 �L + X̂

1,2
2 �L−1

) = (E − V )�L,

where 2 � l1 � L − 1. The energy functional may be obtained by multiplying the above
equations by the generators �

L,M
1,L ,�

L,M
l1,l2

,�
L,M
L,1 , summed together and integrated over the

angular variables with the trial function (8). Similarly to the previous case the above system
of equations forms a tridiagonal d × d matrix operator (now with d = L) of the Schrödinger
multi-component equation (13) with the same structure of the operators D̂1 and D̂2 as before.

5. Explicit forms of some equations

In this section we present the explicit expressions for the two-particle Schrödinger equations
in the triangle variables for the states corresponding to the most important lowest values of
the total angular momentum. Due to the independence of the resulting equations on M, in
generator functions �

L,M
l1,l2

with L = 0, 1, 2 we introduced the shorthand notation, respectively
�S

l1,l2
,�P

l1,l2
,�D

l1,l2
.

5.1. The equation for Se states

The equation for this symmetry was obtained by Hylleraas [1]. The parity is even with
L = l1 + l2 = 0 and thus l1 = l2 = 0. The problem reduces to one scalar equation
(d = L+ 1 = 1) with one constant generator function �S

00 ≡ 1/(4π). Then, the wavefunction
takes the form

�S
e (r1, r2) = �S

00(r1, r2, r12) �S
00. (22)

The angular momentum operator in (1) acts on a constant �S
00 so that the corresponding terms

vanish (see table 1). Thus, Schrödinger equation (9) reduces to

[
(−1)

2m1
X̂

00
1 +

(−1)

2m2
X̂

00
2 + V − E

]
�S

00(r1, r2, r12) = 0, (23)

where the Laplace operators of both particles are reduced to X̂
00
1 , X̂

00
2 . Their explicit forms

are determined by equation (2), linked by relation (7) and are given in table 2. In the case of
identical particles, the radial function �S

00 has to be either symmetric or antisymmetric with
respect to the interchange of r1 and r2.

6
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Table 1. The action of the angular operators �1, �2 on some generator functions �.

State L π � �1� �2�

Se 0 +1 �S
00 0 0

P e 1 +1 �P
11 −cos ϑ12�

P
11 −cos ϑ12�

P
11

P o 1 −1 �P
01 0 �P

10 −cos ϑ12�
P
01

�P
10 �P

01 −cos ϑ12�
P
10 0

Do 2 −1 �D
12 −cos ϑ12�

D
12 �D

21 − 2 cos ϑ12�
D
12

�D
21 �D

12 − 2 cos ϑ12�
D
21 −cos ϑ12�

D
21

De 2 +1 �D
02 0

√
10
3 �D

11 − 2 cos ϑ12�
D
02

�D
20

√
10
3 �D

11 − 2 cos ϑ12�
D
20 0

�D
11

√
6
5 �D

02 −cos ϑ12�
D
11

√
6
5 �D

20 −cos ϑ12�
D
11

Table 2. Explicit forms of the non-zero operators X̂
l̃1,l1
1 for S, P, D states; X̂

l̃1,l1
2 are given by

equation (7).

The diagonal operators

X̂
00
1 = Ŷ + 2

r12

∂
∂r12

, X̂
11
1 = Ŷ +

3r2
1 +r2

2 −r2
12

r2
1 r12

∂
∂r12

,

X̂
22
1 = Ŷ +

4r2
1 +2r2

2 −2r2
12

r2
1 r12

∂
∂r12

,

where Ŷ = ∂2

∂r2
1

+ 2
r1

∂
∂r1

+ ∂2

∂r2
12

+
r2
12+r2

1 −r2
2

r1r12

∂2

∂r1∂r12
.

The off-diagonal operators

For P o states L = l1 + l2 = 1 and Do states L = l1 + l2 − 1 = 2:

X̂
01
1 = X̂

12
1 = −2 r2

r1r12

∂
∂r12

,

For De states L = l1 + l2 = 2:

X̂
01
1 = −2

√
6
5

r2
r1r12

∂
∂r12

, X̂
12
1 = −2

√
10
3

r2
r1r12

∂
∂r12

.

5.2. The equation for P e states

This is the case considered by Breit [2] (L = 1, even parity). It can be identified by
L = l1 + l2 − 1, l1 = l2 = 1 and d = L = 1. Then, in this case we have one antisymmetric
generator function �P

11.
For �P

11 the angular operator (3) (see table 1 for details) leads to the following expression:

�i�
P
11(r1, r2, r12)�

P
11 = {

X̂
11
i �P

11(r1, r2, r12)
}
�P

11,

where X̂
11
1 , X̂

11
2 are given in table 2. Schrödinger equation (9) takes the same form as in the

previous case: [
(−1)

2m1
X̂

11
1 +

(−1)

2m2
X̂

11
2 + V − E

]
�P

11(r1, r2, r12) = 0. (24)

The wavefunction is given by

�P
e (r1, r2) = �P

11(r1, r2, r12) �P
11, (25)

7
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where for identical particles the radial part �P
11 has to be either symmetric or antisymmetric

in r1, r2.

5.3. The equation for P o states

This is the second case considered by Breit [2] (L = 1, odd parity). The values l1 and l2 are
confined by L = l1 + l2 = 1. There are two generator functions in this case (d = L + 1 = 2):
�P

01 and �P
10, for l1 = 0, l2 = 1 and for l1 = 1, l2 = 0, respectively. Each of them is neither

symmetric nor antisymmetric. The relation between them

�P
10 (r̂1, r̂2) = �P

01 (r̂2, r̂1) , (26)

is independent of M. The wavefunction for any P o state can be written in the form

�P
o = �P

01(r1, r2, r12) �P
01 + �P

10(r1, r2, r12) �P
10. (27)

For both generators the angular operators �1,�2 (3) are given in table 1 and

�1
(
�P

01 �P
01

) = {
X̂

00
1 �P

01

}
�P

01,

�1
(
�P

10 �P
10

) = {
X̂

11
1 �P

10

}
�P

10 +
{
X̂

01
1 �P

10

}
�P

01.

Similarly for the second particle

�2
(
�P

10 �P
10

) = {
X̂

00
2 �P

10

}
�P

10,

�2
(
�P

01 �P
01

) = {
X̂

11
2 �P

01

}
�P

01 +
{
X̂

01
2 �P

01

}
�P

10,

where the operators X̂
00
i , X̂

11
i , X̂

01
i are given in table 2. Schrödinger equation (9) transforms

to the following pair of coupled equations:(
(−1)

2m1
X̂

00
1 +

(−1)

2m2
X̂

11
2 + V − E

)
�P

01 +
(−1)

2m1
X̂

01
1 �P

10 = 0,

(−1)

2m2
X̂

01
2 �P

01 +

(
(−1)

2m1
X̂

11
1 +

(−1)

2m2
X̂

00
2 + V − E

)
�P

10 = 0,

(28)

where the first equation is associated with �P
01 and the second one with �P

10. For identical
particles, due to (26), the symmetric or antisymmetric wavefunction can be obtained if the
radial functions, �P

01 and �P
10, are linked by the relation

�P
10(r1, r2, r12) = ±�P

01(r2, r1, r12). (29)

In the case of a symmetric or antisymmetric wavefunction the symmetrized form of
equation (28) may be more convenient. To this end let us transform the generator functions
�P

01, �P
10 as follows (cf [15]):

�A ≡ 1√
2

(
�P

01 − �P
10

)
, (30)

�S ≡ 1√
2

(
�P

01 + �P
10

)
, (31)

where �A is antisymmetric and �S is symmetric. Then, the symmetric or antisymmetric
wavefunction, �P

+ or �P
− respectively, is

�P
± = �P

±�S + �P
∓�A, (32)

8
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when �P
+ is symmetric and �P

− is antisymmetric radial function. The pair of equations (28)
in the new representation reads:(

(−1)

2m1
T̂

S+
1 +

(−1)

2m2
T̂

S+
2 + V − E

)
�P

+ +

(
(−1)

2m2
T̂

A+
2 − (−1)

2m1
T̂

A+
1

)
�P

− = 0,(
(−1)

2m2
T̂

A−
2 − (−1)

2m1
T̂

A−
1

)
�P

+ +

(
(−1)

2m1
T̂

S−
1 +

(−1)

2m2
T̂

S−
2 + V − E

)
�P

− = 0,

(33)

where

T̂
S±
i ≡ 1

2

(
X̂

00
i + X̂

11
i ± X̂

01
i

)
, T̂

A±
i ≡ 1

2

(−X̂
00
i + X̂

11
i ± X̂

01
i

)
,

or, in the explicit form,

T̂
S±
i = ∂2

∂r2
i

+
2

ri

∂

∂ri

+
∂2

∂r2
12

+

[
2

r12
+

(r1 ∓ r2)
2 − r2

12

2r2
i r12

]
∂

∂r12
+

r2
12 + r2

i − r2
î

rir12

∂2

∂ri∂r12
− 1

r2
i

,

T̂
A±
i = −1

r2
i

[
1 +

r2
12 − (r1 ∓ r2)

2

2r12

∂

∂r12

]
.

The first equation (33) is the radial coefficient associated with �S and the second one is
associated with �A. Thus, solutions of equations (33) give symmetric, �P

+ , and antisymmetric,
�P

−, coefficients of the symmetric wavefunction �P
+ (27). In the case of the antisymmetric

wavefunction �P
− , the coefficients �P

+ and �P
− should be interchanged in equations (33).

5.4. The equation for Do states

This is the case with two generators (d = L = 2) for which l1 = 1, l2 = 2 and l1 = 2, l2 = 1.
The wavefunction can be expressed as

�D
o = �D

12(r1, r2, r12)�
D
12 + �D

21(r1, r2, r12)�
D
21, (34)

where the generator functions �D
21,�

D
12 are linked by the relation

�D
21(r̂1, r̂2) = −�D

12(r̂2, r̂1). (35)

The angular operators �1 and �2 (3) are given in table 1. For the first particle

�1�
D
12�

D
12 = {

X̂
11
1 �D

12

}
�D

12,

�1�
D
21�

D
21 = {

X̂
22
1 �D

21

}
�D

21 +
{
X̂

12
1 �D

21

}
�D

12,

and for the second particle

�2�
D
21�

D
21 = {

X̂
11
2 �D

21

}
�D

21,

�2�
D
12�

D
12 = {

X̂
22
2 �D

12

}
�D

12 +
{
X̂

12
2 �D

12

}
�D

21.

The explicit forms of X̂
11
i , X̂

22
i and X̂

12
i are given in table 2. The Schrödinger equation

reduces to the pair of equations(
(−1)

2m1
X̂

11
1 +

(−1)

2m2
X̂

22
2 + V − E

)
�D

12 +
(−1)

2m1
X̂

12
1 �D

21 = 0,

(−1)

2m2
X̂

12
2 �D

12 +

(
(−1)

2m1
X̂

22
1 +

(−1)

2m2
X̂

11
2 + V − E

)
�D

21 = 0,

(36)

where the first/second equation results from the coefficient associated with �D
12

/
�D

21.

9
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In the case of identical particles, the symmetric or antisymmetric wavefunctions (34) are
obtained when

�D
21(r1, r2, r12) = ∓�D

12(r2, r1, r12). (37)

We can also transform equation (36) to the symmetrized form, where antisymmetric �A and
symmetric �S angular functions are defined as

�A ≡ 1√
2

(
�D

12 + �D
21

)
, (38)

�S ≡ 1√
2

(
�D

12 − �D
21

)
. (39)

The symmetric wavefunction, �D
+ , or antisymmetric one, �D

− , reads

�D
± = �D

±�S + �D
∓�A, (40)

when �D
+ is symmetric and �D

− is antisymmetric radial function. In the case of a symmetric
wavefunction, �D

+ , equations (36) transform to the symmetrized form(
(−1)

2m1
T̂

S−
1 +

(−1)

2m2
T̂

S−
2 + V − E

)
�D

+ +

(
(−1)

2m1
T̂

A+
1 − (−1)

2m2
T̂

A+
2

)
�D

− = 0,

(
(−1)

2m1
T̂

A−
1 − (−1)

2m2
T̂

A−
2

)
�D

+ +

(
(−1)

2m1
T̂

S+
1 +

(−1)

2m2
T̂

S+
2 + V − E

)
�D

− = 0,

(41)

where

T̂
S±
i = 1

2

(
X̂

11
i + X̂

22
i ± X̂

12
i

)
,

T̂
A±
i = 1

2

(
X̂

11
i − X̂

22
i ± X̂

12
i

)
.

In the explicit form

T̂
S±
i = ∂2

∂r2
i

+
2

ri

∂

∂ri

+
∂2

∂r2
12

+
7r2

i + 3r2
î

∓ 2r1r2 − 3r2
12

2r2
i r12

∂

∂r12
+

r2
i − r2

î
+ r2

12

rir12

∂2

∂ri∂r12
− 4

r2
i

,

T̂
A±
i = 1

r2
i

[
2 +

r2
12 − (r1 ± r2)

2

2r12

∂

∂r12

]
.

In the case of an antisymmetric wavefunction, �D
− , in the pair of equations (41) the radial

functions �D
+ ,�D

− are interchanged. Let us note that the first equation (41) is associated with
the expansion coefficient �S and the second one with �A.

5.5. The equation for De states

This is the even parity L = 2 state. There are three (d = L + 1 = 3) generator functions
�D

02,�
D
20 and �D

11 determined by l1 = 0, l2 = 2; l1 = 2, l2 = 0; and l1 = l2 = 1, respectively.
The wavefunction may be expressed as

�D
e = �D

02(r1, r2, r12)�
D
02 + �D

20(r1, r2, r12)�
D
20 + �D

11(r1, r2, r12)�
D
11 (42)

and the generator functions fulfil the symmetry identities:

�D
20(r̂1, r̂2) = �D

02(r̂2, r̂1), (43)

�D
11(r̂1, r̂2) = �D

11(r̂2, r̂1). (44)

10
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Then for �D
e symmetric �D

11 has to be symmetric and

�D
20(r1, r2, r12) = +�D

02(r2, r1, r12).

In the case of �D
e antisymmetric �D

11 must be antisymmetric and

�D
20(r1, r2, r12) = −�D

02(r2, r1, r12).

The following relations may be easily obtained:

�1�
D
02�

D
02 = {

X̂
00
1 �D

02

}
�D

02,

�1�
D
20�

D
20 = {

X̂
22
1 �D

20

}
�D

20 +
{
X̂

12
1 �D

20

}
�D

11,

�1�
D
11�

D
11 = {

X̂
11
1 �D

11

}
�D

11 +
{
X̂

01
1 �D

11

}
�D

02,

�2�
D
20�

D
20 = {

X̂
00
2 �D

20

}
�D

20,

�2�
D
02�

D
02 = {

X̂
22
2 �D

02

}
�D

02 +
{
X̂

12
2 �D

02

}
�D

11,

�2�
D
11�

D
11 = {

X̂
11
2 �D

11

}
�D

11 +
{
X̂

01
2 �D

11

}
�D

20.

The explicit forms of operators X̂
00
i , X̂

11
i , X̂

22
i , X̂

01
i , X̂

12
i , as well as �1,�2 are given in

tables 1 and 2. Finally, the Schrödinger equation reduces to three coupled equations:(
(−1)

2m1
X̂

00
1 +

(−1)

2m2
X̂

22
2 + V − E

)
�D

02 +
(−1)

2m1
X̂

01
1 �D

11 = 0,

(−1)

2m2
X̂

12
2 �D

02 +

(
(−1)

2m1
X̂

11
1 +

(−1)

2m2
X̂

11
2 + V − E

)
�D

11 +
(−1)

2m1
X̂

12
1 �D

20 = 0, (45)

(−1)

2m2
X̂

01
2 �D

11 +

(
(−1)

2m1
X̂

22
1 +

(−1)

2m2
X̂

00
2 + V − E

)
�D

20 = 0,

where the first equation is associated with �D
02, the second one with �D

20 and the third one with
�D

11.
In order to derive the symmetric form of equations (45) it is convenient to introduce a

new basis of the generator functions

�A ≡ 1√
2

(
�02 − �20

)
, (46)

�S ≡ 1√
2

(
�02 + �20

)
, (47)

�11 ≡ �11, (48)

where �A is antisymmetric and �S,�11 are symmetric. If we introduce

�D
± = �D

±�S + �D
∓�A + �D

11�
11, (49)

then for �D
+ symmetric and �D

− antisymmetric, �D
+ is symmetric when �D

11 is symmetric, and
�D

− is antisymmetric when �D
11 is antisymmetric. Finally, we obtain the symmetrized form of

equations (45)[
(−1)

2m1
T̂

S

1 +
(−1)

2m2
T̂

S

2 + (V − E)

]
�D

+ +

[
(−1)

2m1
T̂

A

1 − (−1)

2m2
T̂

A

2

]
�D

−

+
1√
2

(
(−1)

2m1
X̂

01
1 +

(−1)

2m2
X̂

01
2

)
�D

11 = 0,

11
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(−1)

2m1
T̂

A

1 − (−1)

2m2
T̂

A

2

]
�D

+ +

[
(−1)

2m1
T̂

S

1 +
(−1)

2m2
T̂

S

2 + (V − E)

]
�D

−

+
1√
2

(
(−1)

2m1
X̂

01
1 − (−1)

2m2
X̂

01
2

)
�D

11 = 0, (50)

1√
2

(
(−1)

2m1
X̂

12
1 +

(−1)

2m2
X̂

12
2

)
�D

+ +
1√
2

(
(−1)

2m2
X̂

12
2 − (−1)

2m1
X̂

12
1

)
�D

−

+

(
(−1)

2m1
X̂

11
1 +

(−1)

2m2
X̂

11
2 + (V − E)

)
�D

11 = 0,

where

T̂
S

i = 1
2

(
X̂

00
i + X̂

22
i

)
, T̂

A

i = 1
2

(
X̂

00
i − X̂

22
i

)
.

In explicit form:

T̂
S

i = ∂2

∂r2
i

+
2

ri

∂

∂ri

+
∂2

∂r2
12

+
3r2

i + r2
î

− r2
12

r2
i r12

∂

∂r12
+

r2
i − r2

î
+ r2

12

rir12

∂2

∂ri∂r12
− 3

r2
i

,

T̂
A

i = 1

r2
i

[
3 +

r2
12 − r2

1 − r2
2

r12

∂

∂r12

]
.

The first equation (50) is associated with �S , the second one with �A and the third one
with �11. With symmetric �D

+ and antisymmetric �D
− , equations (50) determine a symmetric

wavefunction �D
+ if �D

11 is symmetric. If �D
11 is antisymmetric and functions �D

+ ,�D
− in

equations (50) are interchanged then the resulting wavefunction, �D
− , is antisymmetric.

6. Final remarks

A simple form of the Schrödinger equation reduced to the triangle variables in a general case of
two interacting particles confined in an external spherical potential. All equations are expressed
in a simple, explicit form. The resulting formalism may be helpful in the extension of both
theoretical and computational approaches developed for helium-like atoms (see e.g. [3–6])
to arbitrary two-particle spherically symmetric systems. It can be especially useful in non-
variational approaches where the explicit form of the differential equations has to be known
(e.g. in the iterative methods of solving Schödinger equation developed by Nakatsuji et al
[17–19]). Apart from a straightforward application the obtained results for a determination of
the relativistic corrections containing p4 terms, one can extend the equations for the description
of three particle systems by including the mass-polarization term proportional to ∇1∇2.
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